какое преобразование было найдено. В результате смысл программы
неким образом зависел бы от порядка описания преобразования.
Поскольку они часто находятся в разных исходных файлах (написанных
разными людьми), смысл программы будет зависеть от порядка
компоновки этих частей вместе. Есть другой вариант - запретить все
неявные преобразования. Нет ничего проще, но такое правило приведет
либо к неэлегантным пользовательским интефейсам, либо к бурному
- стр 184 -
росту перегруженных функций, как это было в предыдущем разделе с
complex.
Самый общий подход учитывал бы всю имеющуюся информацию о типах и
рассматривал бы все возможные преобразования. Например, если
использовать предыдущее описание, то можно было бы обработать
aa=f(1), так как тип aa определяет едиственность толкования. Если
aa является x, то единственное, дающее в результате x, который
требеутся присваиванием, - это f(x(1)), а если aa - это y, то
вместо этого будет использоваться f(y(1)). Самый общий подход
справился бы и с g("asdf"), поскольку единственной интерпретацией
этого может быть g(z(x("asdf"))). Сложность этого подхода в том,
что он требует расширенного анализа всего выражения для того, чтобы
определить интерпретацию каждой операции и вызова функции. Это
приведет к замеделению компиляции, а также к вызывающим удивление
интерпретациям и сообщениям об ошибках, если компилятор рассмотрит
преобразования, определенные в библиотеках и т.п. При таком подходе
компилятор будет принимать во внимание больше, чем, как можно
ожидать, знает пишущий программу программист!
6.4 Константы
Константы классового типа определить невозможно в том смысле, в
каком 1.2 и 12e3 являются константой типа double. Вместо них,
однако, часто можно использовать константы основных типов, если их
реализация обеспечивается с помощью функций членов. Общий аппарат
для этого дают конструкторы, получающие один параметр. Когда
конструкторы просты и подставляются inline, имеет смысл рассмотреть
в качестве константы вызов конструктора. Если, например, в
есть описание класса comlpex, то выражение
zz1*3+zz2*comlpex(1,2) даст два вызова функций, а не пять. К двум
вызовам функций приведут две операции *, а операция + и
конструктор, к которому обращаются для создания comlpex(3) и
comlpex(1,2), будут расширены inline.
6.5 Большие Объеты
При каждом применении для comlpex бинарных операций, описанных
выше, в функцию, которая реализует операцию, как параметр
передается копия каждого операнда. Расходы на копирование каждого
double заметны, но с ними вполне можно примириться. К сожалению, не
все классы имеют небольшое и удобное представление. Чтобы избежать
ненужного копирования, можно описать функции таким образом, чтобы
они получали ссылочные параметры. Например:
class matrix {
double m[4][4];
public:
matrix();
friend matrix operator+(matrix&, matrix&);
friend matrix operator*(matrix&, matrix&);
};
Ссылки позволяют использовать выражения, содержашие обычные
арифметические операции над большими объектами, без ненужного
- стр 185 -
копирования. Указатели применять нельзя, потому что невозможно для
применения к указателю смысл операции переопределить невозможно.
Операцию плюс можно определить так:
matrix operator+(matrix&, matrix&);
{
matrix sum;
for (int i=0; i<4; i++)
for (int j=0; j<4; j++)
sum.m[i][j] = arg1.m[i][j] + arg2.m[i][j];
return sum;
}
Эта operator+() обращается к операндым + через ссылки, но
возвращает значение объекта. Возврат сылки может оказаться более
эффективным:
class matrix {
// ...
friend matrix& operator+(matrix&, matrix&);
friend matrix& operator*(matrix&, matrix&);
};
Это является допустимым, но приводит к сложности с выделением
памяти. Поскольку ссылка на результат будет передаваться из функции
как ссылка на возвращаетмое значение, оно не может быть
автоматической переменной. Поскольку часто операция используется в
выражении больше одного раза, результат не может быть и статической
переменной. Как правило, его размещают в свободной памяти. Часто
копирование возвращаемого значения окаывается дешевле (по времени
выполнения, объему кода и объему данных) и проще программируется.
6.6 Присваивание и Инициализация
Рассмотрим очень простой класс строк string:
struct string {
char* p;
int size; // размер вектора, на который указывает p
string(int sz) { p = new char[size=sz]; }
~string() { delete p; }
};
Строка - это структура данных, состоящая из вектора символов и
длины этого вектора. Вектор создается конструктором и уничтожается
деструктором. Однако, как показано в #5.10, это может привести к
неприятностям. Например:
void f()
{
string s1(10);
string s2(20);
s1 = s2;
}
- стр 186 -
будет размещать два вектора символов, а присваивание s1=s2 будет
портить указатель на один из них и дублировать другой. На выходе из
f() для s1 и s2 будет вызываться деструктор и уничтожать один и тот
же вектор с непредсказуемо разрушительными последствиями. Решение
этой проблемы состоит в том, чтобы соответствующим образом
определить присваивание объектов типа string:
struct string {
char* p;
int size; // размер вектора, на который указывает p
string(int sz) { p = new char[size=sz]; }
~string() { delete p; }
void operator=(string&)
};
void string::operator=(string& a)
{
if (this == &a) return; // остерегаться s=s;
delete p;
p=new char[size=a.size];
strcpy(p,a.p);
}
Это определение string гарантирует,и что предыдущий пример будет
работать как предполагалось. Однако небольшое изменение f()
приведет к появлению той же проблемы в новом облике:
void f()
{
string s1(10);
s2 = s1;
}
Теперь создается только одна строка, а уничтожается две. К
ненинициализированному объекту определенная пользователем операция
присваивания не применяется. Беглый взгляд на string::operator=()
объясняет, почему было неразумно так делать: указатель p будет
содержать неопределенное и совершенно случайное значение. Часто
операция присваивания полагается на то, что ее аргументы
инициализириованы. Для такой инициализации, как здесь, это не так
по определению. Следовательно, нужно определить похожую, но другую,
функцию, чтобы обрабатывать инициализацию:
- стр 187 -
struct string {
char* p;
int size; // размер вектора, на который указывает p
string(int sz) { p = new char[size=sz]; }
~string() { delete p; }
void operator=(string&)
string(string&);
};
void string::string(string& a)
{
p=new char[size=a.size];
strcpy(p,a.p);
}
Для типа X инициализацию тем же типом X обрабатывает конструктор
X(X&). Нельзя не подчеркнуть еще раз, что присваивание и
инициализация - разные действия. Это особенно существенно при
описании деструктора. Если класс X имеет конструктор, выполняющий
нетривиальную работу вроде освобождения памяти, то скорее всего
потребуется полный комплект функций, чтобы полностью избежать
побитового копирования объектов:
class X {
// ...
X(something); // конструктор: создаеть объект
X(&X); // конструктор: копирует в инициализации
operator=(X&); // присваивание: чистит и копирует
~X(); // деструктор: чистит
};
Есть еще два случая, когда объект копируется: как параметр
функции и как возвращаемое значение. Когда передается параметр,
инициализируется неинициализированная до этого переменная -
формальный параметр. Семантика идентична семантике инициализации.
То же самое происходит при возврате из функции, хотя это менее
очевидно. В обоих случаях будет применен X(X&), если он определен:
string g(string arg)
{
return arg;
}
main()
{
string s = "asdf";
s = g(s);
}
Ясно, что после вызова g() значение s обязано быть "asdf".
Копирование значения s в параметр arg сложности не представляет:
для этого надо взывать string(string&). Для взятия копии этого
значения из g() требуется еще один вызов string(string&); на этот
раз инициализируемой является временная переменная, которая затем
- стр 188 -
присваивается s. Такие переменные, естественно, уничтожаются как
положено с помощью string::~string() при первой возможности.
6.7 Индексирование
Чтобы задать смысл индексов для объектов класса используется
функция operator[]. Второй параметр (индекс) функции operator[]
может быть любого типа. Это позволяет определять ассоциативные
массивы и т.п. В качестве примера давайте перепишем пример из
#2.3.10, где при написании небольшой программы для подсчета числа
вхождений слов в файле применялся ассоциативный массив. Там
использовалась функция. Здесь определяется надлежащий тип
ассоциативного массива:
struct pair {
char* name;
int val;
};
class assoc {
pair* vec;
int max;
int free;
public:
assoc(int);
int& operator[](char*);
void print_all();
};
В assoc хранится вектор пар pair длины max. Индекс первого
неиспользованного элемента вектора находится в free. Конструктор
выглядит так:
assoc::assoc(int s)
{
max = (s<16) ? s : 16;
free = 0;
vec = new pair[max];
}
При реализации применяется все тот же простой и неэффективный метод
поиска, что использоваляся в #2.3.10. Однако при переполнении assoc
увеличивается:
- стр 189 -
#include
int assoc::operator[](char* p)
/*
работа с множеством пар "pair":
поиск p,
возврат ссылки на целую часть его "pair"
делает новую "pair", если p не встречалось
*/
{
register pair* pp;
for (pp=&vec[free-1]; vec<=pp; pp--)
if (strcmp(p,pp->name)==0) return pp->val;
if (free==max) { // переполнение: вектор увеличивается
pair* nvec = new pair[max*2];
for ( int i=0; iname = new char[strlen(p)+1];
strcpy(pp->name,p);
pp->val = 0; // начальное значение: 0
return pp->val;
}
Поскольку представление assoc скрыто, нам нужен способ его печати.
В следующем разделе будет показано, как определить подходящий
итератор, а здесь мы используем простую функцию печати:
vouid assoc::print_all()
{
for (int i = 0; i>buf) vec[buf]++;
vec.print_all();
}
- стр 190 -
6.8 Вызов Функции
Вызов функции, то есть запись выражение(список_выражений), можно
проинтерпретировать как бинарную операцию, и операцию вызова можно
перегружать так же, как и другие операции. Список параметров
функции operator() вычисляется и проверяется в соответствие с
обычнчми правилами передачи параметров. Перегружающая функция может
оказаться полезной главным образом для определения типов с
единственной операцией и для типов, у которых одна операция
настолько преобладает, что другие в большинстве ситуаций можно не
принимать во внимание.
Для типа ассоциативного массива assoc мы не определили итератор.
Это можно сделать, определив класс assoc_iterator, работа которого
состоит в том, чтобы в определенном порядке поставлять элементы из